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Abstract  A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind 
fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. 
The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- cali-
brated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (pre-
dictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is 
confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured 
at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992–1999. The predic-
tand-predictor relationship is applied to IPCC GFDL model output (2.0˚×2.5˚) of downscaled coastal wind at 0.25˚×0.25˚ resolution. 
The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further 
quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the 
mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value. 
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1 Introduction 
Coupled (atmosphere-ocean) Global Circulation Mod-

els (CGCMs) are important tools to project climate vari-
ability under different greenhouse gas emission scenarios. 
However, their abilities to resolve the regional/local cli-
mate changes are largely compromised by coarse resolu-
tions, which typically range from 125 to 400 km for 
CGGMs participating in IPCC (Intergovernmental Panel 
on Climate Change) model assessment (Bracegirdle et al., 
2013; IPCC, 2007a). Regional downscaling is much 
needed to project coarse-resolution climate model solu-
tions to finer regional resolutions, so that detailed local 
climate projections can be derived. This is especially 
relevant for coastal regions, which are vulnerable to 
threats including changes in strengths and patterns of 
coastal storms and sea level rise associated with glacial 
melting and thermal expansion of ocean waters. 

Regional downscaling methods can be categorized into 
either dynamical or statistical approach. Dynamical down- 
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scaling uses nested high-resolution models, which are 
very costly to implement. Statistical downscaling offers a 
much more cost-effective means, as demonstrated by re-
cent studies of land surface wind (Najac et al., 2009; Pryor 
et al., 2006; Sailor et al., 2000; Salameh et al., 2009) and 
the variability of surface wind over the Atlantic Ocean 
(Cassou et al., 2011) and other surface atmospheric vari-
ables (Gutiérrez et al., 2012; Dayon et al., 2015; Min-
vielle et al., 2011). In this study we took a multivariate, 
high-resolution, statistical downscaling approach to ana-
lyze regional coastal surface wind fields for the U.S. east 
coastal ocean, the Gulf of Mexico and the Caribbean Sea. 

2 Methods and Data 
Fundamentals to the statistical downscaling method 

used in this study are the building of a statistical relation-
ship between local/regional variables (predictands) and 
large-scale climate characteristics (predictors) for the 
present day climate. This relationship is subsequently 
applied to the large-scale CGCM’s outputs for different 
climate scenarios of interest for the future. Here we 
adopted a statistical downscaling approach introduced by 
Goubanova et al. (2011), which generated sea-surface 
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wind in the Peru-Chile upwelling region based on IPSL- 

CM4 model output. Specifically, the statistical model 
applied a multiple linear regression between the ‘predic-
tand’, a cross-calibrated, multi-platform (CCMP), multi- 

instrument ocean surface wind velocity dataset (http://sivo. 

gsfc.nasa.gov/oceanwinds), and the ‘predictor’, which in-    
cluded the large-scale meridional wind, zonal wind, and 
sea level pressure (SLP) data produced by NOAA NCEP 
(National Centers for Environmental Prediction) reanaly-
sis for the same CCMP data period. The NCEP reanalysis 
data have comparable spatial resolution to that of the 
IPCC’s CGCMs. 

The predictor-predictant relationship was built in the 
empirical orthogonal functions (EOF) space. For the pre-
dictant (daily, 0.25˚×0.25˚ resolution, CCMP zonal and 
meridional wind fields), the EOFs were obtained based on 
the anomalies relative to the mean seasonal cycle for the 
period 1999–2009. We retained the first 15 EOFs, which 
explain more than 80% of the total variance. For the pre-
dictor (daily, 2.5˚×2.5˚ resolution NCEP SLP, zonal and 
meridional wind fields), the EOFs were computed in the 
same fashion for the same time period. We found that the 
first 20 EOFs of the predictor must be included in order to 
explain more than 80% of the total variance (Table 1). 

Table 1 Statistics of the ten predictand PCs used in the downscaling 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

EV (NCEP) 32.84 17.61 10.71 7.01 5.03 3.84 3.02 2.24 1.79 1.38 
EV (CCMP) 25.67 22.39 8.46 7.46 5.07 4.56 3.39 2.57 1.98 1.85 
SD 424.54 396.48 243.66 228.86 188.69 178.93 154.22 134.35 117.78 113.84 
SE 50.47 42.75 51.36 36.70 39.98 38.96 38.24 37.12 37.94 55.07 
SE/SD 0.12 0.11 0.21 0.16 0.21 0.22 0.25 0.28 0.32 0.48 

Notes: EV, Percentage of total variance explained by each PC; SD, Standard deviation for each PC; SE, Standard deviation of    
regression error ε. 

 
The predictor-predictant relationship was then built in 

the principal components corresponding to the retained 
EOFs based on the following formulation: 
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where PC_Qi is the ith CCMP Principal Component (PC) 
time series, PC_Nj are the PCs of the NCEP reanalysis,     
αi, j are the regression coefficients determined by the least 
square fitting method, and ε is the regression error. 

To downscale the CGCM solutions (2.0˚×2.5˚ resolu-
tion Geophysical Fluid Dynamics Laboratory CM2.1) for 
two different climate scenarios, we first computed the 
anomalies of the corresponding predictor variables 
(GFDL CM2.1 simulated meridional wind, zonal wind, 
and SLP) relative to their mean seasonal cycles, which 
were derived from the GFDL CM2.1 (20C3M run) for the 
period 1970–1999. Taking X as the anomalies of predic-
tors for a given climate scenario, we then projected X 
onto EOF_Nj space derived in (1) to obtain the corre-
sponding PCs and applied the same set of regression co-
efficients derived in (1) to these projections. The resulting 
PC_X time series associated with a given climate scenario 
can be derived over a coastal region of interest at higher 
resolution: 
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Finally, the downscaled fields were constructed fol-
lowing: 

_ _DSY PC X EOF Q  ,             (3) 

where EOF_Q are the 0.25˚×0.25˚ resolution CCMP ei-

genfunctions, and YDS are the downscaled anomalies of 
0.25˚×0.25˚ resolution meridional and zonal wind field 
anomalies. The total wind fields can be obtained by add-
ing the anomalies with present-day seasonal cycle derived 
from CCMP.  

3 Statistical Model Validation  
In order to validate the statistical model expressed in 

Eqs. (1) to (3), we compared our downscaled wind fields 
(at 0.25˚×0.25˚ resolution) based on NCEP reanalysis 
against in-situ surface wind measured at 16 National Data 
Buoy Center (NDBC) buoys in the U.S. east coastal 
ocean and the Gulf of Mexico (GOM) during 1992–1999. 
Fig.1, for example, indicates a good agreement between 
year-long time series of observed and downscaled wind at 
three buoys: one in the Middle Atlantic Bight (MAB), one 
in the South Atlantic Bight (SAB), and the other in the 
GOM. 

Table 2 summarizes comparisons at all 16 stations us-
ing correlation coefficients (R) and root mean square er-
rors (RMSE) between the observed and downscaled 
winds. Both forms of the comparisons (i.e., the correla-
tion coefficients at most of stations are greater than 0.6) 
suggest that the statistical downscaling model works well 
in capturing the temporal and spatial variability in both 
meridional and zonal winds. The downscaled model per-
formed best in the winter season (when winds are typi-
cally stronger) and resembled better the observed winds 
at open-ocean stations (e.g., stations 41001, 41004, and 
44025) than at coastal stations (e.g., stations SRST2 and 
42035), suggesting that more refined wind downscaling 
would be needed to better resolve complex near-shore 
topographic/orographic features that may affect the 
model’s accuracy. 



YAO et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2016 15: 577-582 

 

579

 

Fig.1 Comparisons between observed and downscaled wind (meridional and zonal wind speeds) at three NDBC buoys 
in the U.S. east coastal ocean and the Gulf of Mexico. Comparisons were done for the period 1992–1999 and summa-
rized in Table 1. Here only three year-long time series comparisons are shown as an example. 

Table 2 Correlation coefficients and root mean square errors (RMSE) between observed and downscaled winds at 16 NDBC 
buoys in the U.S. east coastal ocean and the Gulf of Mexico from 1992–1999 

R RMSE 
Station ID Location Lon Lat # of Obs.

u v u v 

44007 12 nm southeast of Portland, ME −70.144 43.531 8449 0.74 0.64 2.55 3.60 
44005 78 nm east of Portsmouth, NH −69.140 43.189 7507 0.81 0.80 3.00 3.29 

44013 
16 nw east of 
Boston, MA 

−70.651 42.346 9230 0.78 0.70 3.02 3.35 

BUZM3 Buzzards Bay, MA −71.033 41.397 5296 0.81 0.75 3.14 3.85 
44025 33 nm south of Long Island, NY −73.166 40.250 10097 0.80 0.74 3.17 3.38 
44009 26 nw southeast of Cape May, NJ −74.702 38.464 8649 0.76 0.76 2.88 3.48 
CHLV2 Chesapeake Light, VA −75.710 36.910 9997 0.74 0.77 3.08 3.89 

41001 
150 nw east of 
Cape Hatteras, NC 

−72.698 34.675 7547 0.82 0.84 3.16 3.24 

CLKN7 Cape Lookout, NC −76.525 34.622 10169 0.76 0.78 2.94 3.30 

41004 
41 nw southeast of 
Charleston, SC 

−79.099 32.501 6273 0.82 0.78 2.83 3.18 

LKWF1 Lake Worth, FL −80.033 26.612 6963 0.72 0.73 2.71 2.71 
KTNF1 Keaton Beach, FL −83.592 29.817 5189 0.68 0.59 2.6 2.57 
BURL1 Southwest Pass, LA −89.428 28.905 9874 0.73 0.77 2.94 3.06 
42001 180 nw south of Southwest Pass, LA −89.667 25.900 9713 0.78 0.80 2.45 2.75 
SRST2 Sabine Pass, TX −94.033 29.683 9693 0.63 0.70 2.45 3.10 
42035 Galveston, TX −94.413 29.232 6571 0.67 0.77 2.63 3.04 

Notes: R, correlation coefficient; RMSE, root mean square standard error, unit: m s−1. 
 

4 Applications to Different Climate   
Scenarios 
The GFDL CM2.1 climate model predictions of surface 

wind fields were statistically downscaled using the same 

method above. The method is extremely efficient com-
pared with the dynamical downscaling approach. The 
simulation to produce a 100 year (2001–2100) statistical 
wind downscaling only took about 1 hour to complete on 
a single processor Linux computer. We chose two climate 
emission scenarios: the pre-industrial (PI) scenario and  
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the A1F1 scenario. The higher-emission A1F1 scenario 
represents a future condition in which fossil fuel-intensive, 
rapid economic growth occurs, and a global population 
peaks in the mid-century and then declines afterward. In 
this scenario, concentrations of atmospheric carbon diox-
ide reach 940 ppm by 2100, which is more than triple Pre- 

Industrial level (which is about 280 ppm in the PI sce-
nario) (IPCC, 2007b, 2013). 

Fig.2 shows the downscaled wind fields in the IPCC PI 
and A1F1 emission scenarios averaged for April in 2069– 

2079. We present these results because: 1) the IPCC pro-
jected concentration of atmospheric carbon dioxide reaches 
a relatively steady rate of increase after 2060; 2) their 
April means clearly demonstrate the wind responses to 
different climate change scenarios.  

In both PI and A1F1 scenarios, the April mean surface 
winds are stronger in the southwest Caribbean than in 
other areas. There, the maximum wind speed is 9.6 m s−1 
and 10.0 m s−1 in the PI scenario and the A1F1 scenario, 

respectively. Surface wind speeds are reduced in the 
MAB with the maximum wind speed being 8.9 m s−1 and 
7.2 m s−1 in the PI scenario and the A1F1 scenario, respec-
tively. Winds in the SAB and GOM are relatively weaker 
in both scenarios. The difference in wind speed between 
the two scenarios (Fig.2c; A1F1 wind speed minus PI 
wind speed) shows that there is an overall decrease in the 
mean wind speed from the PI to the A1F1 scenario. The 
spatially averaged difference is 0.15 m s−1. The most sig-
nificant decreases are seen offshore of the U.S. east coast, 
and along the west coast of Florida. There the maximum 
wind speeds in the A1F1 scenario are reduced by up to 
26% in the north Atlantic and 24% in the Gulf of Mexico 
compared with the PI scenario. A small increase in wind 
speed is found in the southern Gulf of Mexico and the 
Caribbean Sea. A similar spatial pattern has also been 
reported by Wang et al. (2014) for significant wave height 
changes based on the analysis of 20 CMIP5 climate model 
results.  

 

Fig.2 Downscaled April mean wind speed fields in (a) the Pre-Industrial scenario and (b) the A1F1 scenario (c) Wind 
field difference between the scenarios (A1F1 minus Pre-Industrial). 

 

Fig.3 Calculated April mean wind energy in (a) Pre-Industrial scenario, (b) A1F1 scenario, (c) Wind power difference 
between the two scenarios (A1F1 minus Pre-Industrial). 
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Given that wind is a promising source of renewable 
energy, we can use the resulting downscaled regional 
wind projections to further explore wind energy as a re-
source in the two climate scenarios. Wind energy poten-
tial is proportional to the wind speed cubed and can be 
computed as:  

30.5P rho V   ,                 (4) 

where P is the power (watts per unit area), rho is the air 
density (taken as 1.225 kg m−3 at sea level), and V is the 
wind speed (m s−1). 

Using the long-term (2069–2079) April monthly aver-
age in PI and A1F1 scenarios, we see that the corre-
sponding wind energy potentials have patterns similar to 
their wind fields (Fig.3). Higher wind energy potentials 
are projected offshore of the MAB and in the southwest 
Caribbean in both PI and A1F1 scenarios (Figs.3a and 3b). 
Specifically offshore of the mid-Atlantic, the energy 
maxima for the PI (A1F1) scenario can be found with a 
value of 698.1 (385.6) watts per unit area. The difference 
between the two scenarios (Fig.3c) shows the wind en-
ergy potential would decrease in high-CO2 A1F1 offshore 
of the mid-Atlantic and northeast U.S., where a maximum 
decrease of 322 watts per unit area is seen. Our results 
suggest that the power potential of wind energy could be 
protected by reducing global CO2 emissions. In a feed-
back loop, the more wind energy we invest in now to re-
place fossil fuels (which increase CO2), the more we will 
protect future potential wind energy production, because 
less CO2 leads to less loss of wind speed.   

5 Summary 
We developed a highly efficient multivariate statistical 

method to assess the impact of climate change on regional 
wind fields for the U.S. east coast, the Gulf of Mexico 
and Caribbean Sea. The NASA cross-calibrated, multi- 

platform (CCMP), multi-instrument ocean surface wind 
velocity dataset and NOAA NCEP reanalysis were used 
to derive the statistical model, which was subsequently 
used to downscale IPCC GFDL climate model wind pro-
jections in Pre-Industrial and A1F1high-CO2 A1F1 future 
scenarios. The downscaling allows refining of the repre-
sentation of daily coastal winds and wind energy potential 
to a local scale. The model predicts that the average wind 
in April will significantly weaken in the A1F1 scenario 
relative to the PI scenario, especially offshore of the mid- 

Atlantic and northeast U.S., with the speed reduction 
reaching up to one quarter of its original value. Because 
the wind energy potential is proportional to the wind 
speed cubed, the wind weakening would also indicate a 
more than 50% reduction in wind power in those areas.  

An additional application of the resulting downscaled 
wind fields is to use them to drive high-resolution coastal 
circulation models and to quantify storm-induced sea 
level variability in different climate scenarios. We will 
report findings of that study in a future correspondence. It 
should be mentioned that our wind downscale analysis 
may be limited by several factors/processes that were 

omitted in the method, such as air-sea couplings (Zambon 
et al., 2014; Chelton et al., 2004; Nelson et al., 2014) and 
land-sea thermal contrast (Zhou and Zou, 2010), due to 
the limitations/biases of global CGCMs. Future research 
focusing on improving their representations in the down-
scaling analysis is still needed.  
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